
Joshua Vasquez
March 26, 2015

synthesizing an FPGA SPI slave “from the gates”

From Datasheets to Digital Logic



The Road Map

● Top-Level Goal
○ Motivation

● What is SPI?
○ SPI Topology
○ SPI Wiring
○ SPI Protocol*

● Defining a Protocol
○ Inspired by MEMs Sensors

● Example Reading Encoders
● Building up the SPI Communication Hardware
● Building up the Controller Hardware
● Wrap-up



The Top-Level Goal

● Develop a protocol for both sending and receiving data 
between a microcontroller and an FPGA



● Develop a protocol for both sending and receiving data 
between a microcontroller and an FPGA

The Top-Level Goal

dataaaa!



● Develop a protocol for both sending and receiving data 
between a microcontroller and an FPGA

The Top-Level Goal

dataaaa!

Why?



● Develop a protocol for both sending and receiving data 
between a microcontroller and an FPGA

The Top-Level Goal

dataaaa!

Why?
● read encoders
● drive (lots) of hobby servos
● turn the FPGA into a generic command-accepting 

slave
● etc..



SPI

● What is it?



SPI

● What is it?
○ Method of synchronous serial communication



SPI

● What does it look like?



SPI Topology

● What does SPI look like?



SPI Topology

● What does SPI look like?

● Bidirectional data transfer synchronized with a clock.
● Frame (in this case) is 8-bits per transfer
● Multiple slaves supported



SPI Topology (contd)

Slave

SCK

MISO

MOSI

CS

Bidirectional Data Transfer

via MISO and MOSI

Master



SPI Topology (contd)

A Single 8-bit transfer



SPI Topology (contd)

A Single 8-bit transfer

NOTE: Protocol is undefined.



Defining a Protocol

dataaaa!



Defining a Protocol

dataaaa!

We need to agree here



Protocol Inspiration:

● MEMs Sensor Interface
○ All the same communication 

interface!



● Reading and Writing to Registers inside of the Chip’s 
Internal memory
○ READ: get data from the chip
○ WRITE: tweak settings on the chip

Example Chip:
Pressure Sensor 
with i2c interface

Protocol Inspiration: MEMs



Read/Write Address Data0, Data1,… DataN

Protocol Inspiration: MEMs



Bosch MEMs Sensors

Read/Write Address Data0



Invensense Sensors

Read/Write Address Data0



ST Sensors

Read/Write Address

Data0



The Road Map

● Top-Level Goal
○ Motivation

● What is SPI?
○ SPI Topology
○ SPI Wiring
○ SPI Protocol*

● Defining a Protocol
○ Inspired by MEMs Sensors

● Example Reading Encoders
● Building up the SPI Communication Hardware
● Building up the Controller Hardware
● Wrap-up



Application: reading encoders



Application: reading encoders



Encoder Data

Rotary Encoder Example (Reading)

Application: reading encoders



Encoder Data

...

0x00

0x01

0x02

Application: reading encoders



Encoder Data

...

0x00

0x01

0x02

SPI Controller

SPI Shift Registers

MISO

CS
SCK

MOSI

Application: reading encoders



Controller 
Hardware

Building it up From Gates

Commands

Two Parts

SPI 
Communication 
Hardware



Controller 
Hardware

Building it up From Gates

Commands

Two Parts

SPI 
Communication 
Hardware



SPI Communication Hardware



Two 8-bit Buffers

Receiving

Sending



Two 8-bit Buffers

Receiving

Sending

MOSI

MISO



Two 8-bit Buffers

MOSI

MISO

Note internal vs external logic



Diving into the details



Sending Data 

● Stores 1 bit
● Can be pre-loaded with data 

at any moment in time

D-Flip Flop with Asynchronous Load



Sending Data ● Data gets passed from D to 
Q (aka: stored) on rising 
edge of clock signal

Storing Data: First Method



Sending Data 

Storing Data: Second Method

n

1

n

● Data gets loaded (stored) 
from DATA to Q when 
ALOAD is asserted



Sending Data 



Sending Data 

8-bit Shift Register!



Sending Data 

“Load a byte in parallel” with the ALOAD signal to be clocked out serially!



Sending and Receiving



Sending and Receiving

SetNewData 
logic defined 
in controller



Controller 
Hardware

Building it up From Gates

Commands

Part Two: the Controller

SPI 
Communication 
Hardware



Controller

Organizes sent/received data

Allows us to read/write to/from register in internal memory.

Memory Addresses are mapped to store data for controlling/reading 
external features.



Controller

Organizes sent/received data

...

MemorySPI Byte Interpreter

received 
SPI data

read/write
Memory-
mapped 
features

data to 
send over 
SPI



Controller

Organizes sent/received data

...

MemorySPI Byte Interpreter

received 
SPI data

read/write
Memory-
mapped 
features

data to 
send over 
SPI



SPI Byte Interpreter

● Identifies start of SPI transfer
● Identifies read or write command
● Fetches data (if read)
● sets data (if write)

SPI Byte Interpreter

received 
SPI data

data to 
send over 
SPI

read/write



Parsing the Waveform



First Step: count bits

Parsing the Waveform



Counter!

Parsing the Waveform



Next Step: identify when 1st byte has arrived.
i.e: count to 8 and catch clock falling edge.

Parsing the Waveform
From here to here



three flip flops and the counter!

Parsing the Waveform
From here to here

save 
rising 
edge

save 
falling 
edge



Next Step: Store the starting address

Parsing the Waveform

these 7 bytes



8-bit Shift-Register 
(with asynchronous 
loading)

Parsing the Waveform

store these 7 bytes

trigger 
here 



Next Step: identify read or write

Parsing the Waveform

R/W



Save MSbit from 1st byte transferred.

Parsing the Waveform

trigger 
here 



Next Step: increment the address after each byte.

Parsing the Waveform



Another counter! (count up once per byte using 
bit-counter)

Parsing the Waveform



SPI Controller Complete

Parsing the Waveform



Controller 
Hardware

Building it up From Gates

Commands

Both Parts Complete!

SPI 
Communication 
Hardware



Wrap-up

dataaaa!



Wrap-up



Questions?

● Reading Example
○ https://github.com/Poofjunior/HardwareModules/tree/master/SPI_EncoderReader

● Writing Example
○ https://github.com/Poofjunior/HardwareModules/tree/master/ServoExtender

https://github.com/Poofjunior/HardwareModules/tree/master/SPI_EncoderReader
https://github.com/Poofjunior/HardwareModules/tree/master/SPI_EncoderReader
https://github.com/Poofjunior/HardwareModules/tree/master/ServoExtender
https://github.com/Poofjunior/HardwareModules/tree/master/ServoExtender

